

Date Planned ://	Daily Tutorial Sheet-1	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

1.	A vessel at $1000\ K$ contains CO_2 with a pressure of $0.5\ atm.$ Some of the CO_2 is converted into CO on the
	addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K_p is:

(A) 1.8 atm

3 atm (B)

(C)

0.3 atm

0.18 atm (D)

2. Four moles of PCl₅ are heated in a closed 4 dm³ container to reach equilibrium at 400 K. At equilibrium 50% of PCl₅ is dissociated. What is the value of K_c for the dissociation of PCl₅ into PCl₃ and Cl₂ at 400 K?

(A) 0.50 (B) 1.00 (C) 1.15 (D) 0.05

Consider the following gaseous equilibria with equilibrium constant K_1 and K_2 respectively. 3.

 $SO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow SO_3(g); \qquad 2SO_3(g) \Longrightarrow 2SO_2(g) + O_2(g)$

The equilibrium constant are related as:

(A)

 $2K_1 = K_2^2$ (B) $K_1^2 = \frac{1}{K_2}$ (C) $K_2^2 = \frac{1}{K_1}$ (D) $K_2 = \frac{2}{K_1^2}$

 $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ 4.

> In the above reaction, if the pressure at equilibrium and at 300 K is 100 atm then what will be the equilibrium constant Kp?

(A) 2500 atm² **(B)** 50 atm^2 (C) 100 atm² (D) 200 atm2 lacksquare

5. 3 moles of A and 4 moles of B are mixed together and allowed to come into equilibrium according to the following reaction.

$$3A(g) + 4B(g) \rightleftharpoons 2C(g) + 3D(g)$$

When equilibrium is reached, there is 1 mole of C. The equilibrium constant of the reaction is:

(B) $\left(\frac{1}{3}\right)^3$ **(C)** $\left(\frac{1}{2}\right)^4$

6. Which of the following is a wrong statement about equilibrium state?

> Rate of forward reaction = Rate of backward reaction (A)

(B) Equilibrium is dynamic

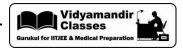
(C) Catalysts increase value of equilibrium constant

(D) Free energy change is zero

7. $A + B \rightleftharpoons C + D$

> Initially moles of A and B are equal. At equilibrium, moles of C are three times of A. The equilibrium constant of the reaction will be:

(A)


(B) 2 (C) 4 (D) 9

8. Which of the following is not a physical equilibrium?

> Ice ← Water (A)

 $I_2(s) \rightleftharpoons I_2(g)$ **(B)**

(C) $S(\ell) \Longrightarrow S(g)$ (D) $3O_2(g) \rightleftharpoons 2O_3(g)$

9.	$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$	٤)
----	---	----

The equilibrium constant of the above reaction is 6.4 at 300 K. If 0.25 mole each of H₂ and I₂ are added to the system, the equilibrium constant will be:

- (A)
- **(B)** 0.8
- (C) 3.2
- (D) 1.6

10. For a reaction at equilibrium which of the following is correct?

- Concentration of reactant = concentration of product
- **(B)** Concentration of reactant is always greater than product
- (C) Rate of forward reaction = rate of backward reaction
- (D) $Q_c = k$

11. For the following three reactions I, II, and III, equilibrium constants are given

I.
$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g); K_1$$

II.
$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g); K_2$$

III.
$$CH_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 4H_2(g); K_3$$

Which of the following relations is correct?

- $K_1 \sqrt{K_2} = K_3$ (B) (A)
- $K_2K_3 = K_1$ (C) $K_3 = K_1K_2$ (D) $K_3K_2^3 = K_1^2$

12. For the following reaction in gaseous phase
$$CO(g) + \frac{1}{2}O_2(g) \rightleftharpoons CO_2(g) \times_p / \times_c$$
 is :

- $(RT)^{1/2}$ (A)
- (B)

(B)

- $(RT)^{-1/2}$
- (C)
- $(RT)^{-1}$ (D)
- Three moles of PCl₅, three moles of PCl₃ and two moles of Cl₂ are taken in a closed vessel. If at 13. equilibrium the vessel has 1.5 moles of PCl_5 , the number of moles of PCl_3 present in it is :
 - (A)
- (B)
- (C)
- (D)
- 14. 1 mole of H₂ and 2 moles of I₂ are taken initially in a 0.2 L container. Then, the number of moles of H₂ at equilibrium is 0.2. Then, the number of moles of I_2 and HI at equilibrium are :
 - 1.2, 1.6 (A)
- 1.8, 1.0
- (C) 0.4, 2.4
- 0.8, 2.0 (D)
- 15. On doubling P and V at constant temperature, the equilibrium constant will:
 - Remain constant

(B) Become double

(C) Become one-fourth (D) None of these